OBJECTIVE: To describe our designed protocol for the reconstruction of three-dimensional (3D) models applied to various endoscopic endonasal approaches that allows performing a 3D virtual dissection of the desired approach and analyzing and quantifying critical surgical landmarks. METHODS: All human cadaveric heads were dissected at the Laboratory of Surgical Neuroanatomy of the University of Barcelona. The dissection anatomic protocol was designed as follows: 1) virtual surgery simulation systems, 2) navigated cadaver dissection, and 3) postdissection analysis and quantification of data. RESULTS: The virtual dissection of the selected approach, the preliminary exploration of each specimen, the real dissection laboratory experience, and the analysis of data retrieved during the dissection step provide a complete method to improve general knowledge of the main endoscopic endonasal approaches to the skull base, at the same time allowing the development of new surgical techniques. CONCLUSIONS: The methodology for surgical training in the anatomic laboratory described in this article has proven to be very effective, producing a depiction of anatomic landmarks as well as 3D visual feedback that improves the study, design, and execution in various neurosurgical approaches. The Dextroscope as a virtual surgery simulation system can be used as a preoperative planning tool that can allow the neurosurgeon to perceive, practice reasoning, and manipulate 3D representations using the transsphenoidal perspective acquiring specifically visual information for endoscopic endonasal approaches to the skull base. The Dextroscope also can be used as an advanced tool for analytic purposes to perform different types of measurements between surgical landmarks before, during, and after dissection.

A Three-Dimensional Computer-Based Perspective of the Skull Base

de Notaris M;
2014-01-01

Abstract

OBJECTIVE: To describe our designed protocol for the reconstruction of three-dimensional (3D) models applied to various endoscopic endonasal approaches that allows performing a 3D virtual dissection of the desired approach and analyzing and quantifying critical surgical landmarks. METHODS: All human cadaveric heads were dissected at the Laboratory of Surgical Neuroanatomy of the University of Barcelona. The dissection anatomic protocol was designed as follows: 1) virtual surgery simulation systems, 2) navigated cadaver dissection, and 3) postdissection analysis and quantification of data. RESULTS: The virtual dissection of the selected approach, the preliminary exploration of each specimen, the real dissection laboratory experience, and the analysis of data retrieved during the dissection step provide a complete method to improve general knowledge of the main endoscopic endonasal approaches to the skull base, at the same time allowing the development of new surgical techniques. CONCLUSIONS: The methodology for surgical training in the anatomic laboratory described in this article has proven to be very effective, producing a depiction of anatomic landmarks as well as 3D visual feedback that improves the study, design, and execution in various neurosurgical approaches. The Dextroscope as a virtual surgery simulation system can be used as a preoperative planning tool that can allow the neurosurgeon to perceive, practice reasoning, and manipulate 3D representations using the transsphenoidal perspective acquiring specifically visual information for endoscopic endonasal approaches to the skull base. The Dextroscope also can be used as an advanced tool for analytic purposes to perform different types of measurements between surgical landmarks before, during, and after dissection.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4858494
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact