While RDF data are graph shaped by nature, most traditional Machine Learning (ML) algorithms expect data in a vector form. To transform graph elements to vectors, several graph embedding approaches have been proposed. Comparing these approaches is interesting for 1) developers of new embedding techniques to verify in which cases their proposal outperforms the state-of-art and 2) consumers of these techniques in choosing the best approach according to the task(s) the vectors will be used for. The comparison could be delayed (and made difficult) by the choice of tasks, the design of the evaluation, the selection of models, parameters, and needed datasets. We propose GEval, an evaluation framework to simplify the evaluation and the comparison of graph embedding techniques. The covered tasks range from ML tasks (Classification, Regression, Clustering), semantic tasks (entity relatedness, document similarity) to semantic analogies. However, GEval is designed to be (easily) extensible. In this article, we will describe the design and development of the proposed framework by detailing its overall structure, the already implemented tasks, and how to extend it. In conclusion, to demonstrate its operating approach, we consider the parameter tuning of the KGloVe algorithm as a use case.

GEval: A Modular and Extensible Evaluation Framework for Graph Embedding Techniques

Pellegrino M. A.;Garofalo M.;
2020-01-01

Abstract

While RDF data are graph shaped by nature, most traditional Machine Learning (ML) algorithms expect data in a vector form. To transform graph elements to vectors, several graph embedding approaches have been proposed. Comparing these approaches is interesting for 1) developers of new embedding techniques to verify in which cases their proposal outperforms the state-of-art and 2) consumers of these techniques in choosing the best approach according to the task(s) the vectors will be used for. The comparison could be delayed (and made difficult) by the choice of tasks, the design of the evaluation, the selection of models, parameters, and needed datasets. We propose GEval, an evaluation framework to simplify the evaluation and the comparison of graph embedding techniques. The covered tasks range from ML tasks (Classification, Regression, Clustering), semantic tasks (entity relatedness, document similarity) to semantic analogies. However, GEval is designed to be (easily) extensible. In this article, we will describe the design and development of the proposed framework by detailing its overall structure, the already implemented tasks, and how to extend it. In conclusion, to demonstrate its operating approach, we consider the parameter tuning of the KGloVe algorithm as a use case.
2020
9783030494605
9783030494612
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4860145
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact