The automated recognition of landforms holds significant importance within the framework of digital geomorphological mapping, serving as a pivotal focal point for research and practical applications alike. Over the last decade, various methods have been developed to achieve this goal, ranging from grid-based to object-based approaches, covering a range from supervised to completely unsupervised techniques. Furthermore, the vast majority of the methods mentioned depend on Digital Elevation Models (DEMs) as their primary input, highlighting the crucial significance of meticulous preparation and rigorous quality assessment of these datasets. In this study, we compare the outcomes of grid-based methods for landforms extraction and surficial process type assessment, leveraging various DEMs as input data. Initially, we employed a photogrammetric Digital Terrain Model (DTM) generated at a regional scale, along with two LiDAR datasets. The first dataset originates from an airborne survey conducted by the national government approximately a decade ago, while the second dataset was acquired by UAV as part of this study’s framework. The results highlight how the higher resolution and level of detail of the LiDAR datasets allow the recognition of a higher number of features at higher scales; but, in contrast, generally, a high level of detail corresponds with a higher risk of noise within the dataset, mostly due to unwanted natural features or anthropogenic disturbance. Utilizing these datasets for generating geomorphological maps harbors significant potential in the framework of natural hazard assessment, particularly concerning phenomena associated with geo-hydrological processes.

A Comparison of Landforms and Processes Detection Using Multisource Remote Sensing Data: The Case Study of the Palinuro Pine Grove (Cilento, Vallo di Diano and Alburni National Park, Southern Italy)

Valiante, Mario
;
Di Benedetto, Alessandro;
2024-01-01

Abstract

The automated recognition of landforms holds significant importance within the framework of digital geomorphological mapping, serving as a pivotal focal point for research and practical applications alike. Over the last decade, various methods have been developed to achieve this goal, ranging from grid-based to object-based approaches, covering a range from supervised to completely unsupervised techniques. Furthermore, the vast majority of the methods mentioned depend on Digital Elevation Models (DEMs) as their primary input, highlighting the crucial significance of meticulous preparation and rigorous quality assessment of these datasets. In this study, we compare the outcomes of grid-based methods for landforms extraction and surficial process type assessment, leveraging various DEMs as input data. Initially, we employed a photogrammetric Digital Terrain Model (DTM) generated at a regional scale, along with two LiDAR datasets. The first dataset originates from an airborne survey conducted by the national government approximately a decade ago, while the second dataset was acquired by UAV as part of this study’s framework. The results highlight how the higher resolution and level of detail of the LiDAR datasets allow the recognition of a higher number of features at higher scales; but, in contrast, generally, a high level of detail corresponds with a higher risk of noise within the dataset, mostly due to unwanted natural features or anthropogenic disturbance. Utilizing these datasets for generating geomorphological maps harbors significant potential in the framework of natural hazard assessment, particularly concerning phenomena associated with geo-hydrological processes.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4873372
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact