We consider groups G such that the set [G, phi] = {g(-1) g(phi)|g is an element of G} is a subgroup for every automorphism phi of G, and we prove that there exists such a group G that is finite and nilpotent of class n for every n is an element of N. Then there exists an infinite not nilpotent group with the above property and the Conjecture 18.14 of Khukhro and Mazurov (The Kourovka Notebook No. 20, 2022) is false.

On finite groups in which the twisted conjugacy classes of the unit element are subgroups

Nicotera C.
2024-01-01

Abstract

We consider groups G such that the set [G, phi] = {g(-1) g(phi)|g is an element of G} is a subgroup for every automorphism phi of G, and we prove that there exists such a group G that is finite and nilpotent of class n for every n is an element of N. Then there exists an infinite not nilpotent group with the above property and the Conjecture 18.14 of Khukhro and Mazurov (The Kourovka Notebook No. 20, 2022) is false.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4879132
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact