BACKGROUND/AIMS: Aquaporin-3 (AQP3) is an aquaglyceroporin and peroxiporin that plays a crucial role in skin barrier homeostasis. Dysregulated AQP3 expression has been observed in different inflammatory skin conditions. Hidradenitis Suppurativa (HS) is an autoinflammatory keratinization disease that typically appears between 10 and 21 years of age, characterized by alteration of skin barrier homeostasis. METHODS: To evaluate in vitro the role of AQP3 in the development of HS, we performed real-time PCR and Western blot to analyze gene and protein levels in human keratinocyte cell lines knock-out (KO) for NCSTN and PSENEN genes, simulating genetic-associated HS. Additionally, we investigated the impact of Glyceryl Glucoside (GG) on biological processes by performing MTT, scratch, proliferation assays and proteome studies. RESULTS: We detected a significant decrease of the levels of AQP3 gene and protein in KO cell lines. GG effectively elevated the levels of mRNA and protein, significantly decreased the hyperproliferation rate, and enhanced cell migration in our in vitro model of genetic Hidradenitis Suppurativa. Pathway enrichment analysis further confirmed GG's role in the migration and proliferation pathways of keratinocytes. CONCLUSION: Our results suggest that AQP3 may act as a new novel actor in HS etio-pathogenesis, and GG could be further explored as potential treatment option for managing HS in patients.

Dysregulation of Aquaporin-3 and Glyceryl Glucoside Restoring Action in Hidradenitis Suppurativa in Vitro Models

Sommella E.;
2024-01-01

Abstract

BACKGROUND/AIMS: Aquaporin-3 (AQP3) is an aquaglyceroporin and peroxiporin that plays a crucial role in skin barrier homeostasis. Dysregulated AQP3 expression has been observed in different inflammatory skin conditions. Hidradenitis Suppurativa (HS) is an autoinflammatory keratinization disease that typically appears between 10 and 21 years of age, characterized by alteration of skin barrier homeostasis. METHODS: To evaluate in vitro the role of AQP3 in the development of HS, we performed real-time PCR and Western blot to analyze gene and protein levels in human keratinocyte cell lines knock-out (KO) for NCSTN and PSENEN genes, simulating genetic-associated HS. Additionally, we investigated the impact of Glyceryl Glucoside (GG) on biological processes by performing MTT, scratch, proliferation assays and proteome studies. RESULTS: We detected a significant decrease of the levels of AQP3 gene and protein in KO cell lines. GG effectively elevated the levels of mRNA and protein, significantly decreased the hyperproliferation rate, and enhanced cell migration in our in vitro model of genetic Hidradenitis Suppurativa. Pathway enrichment analysis further confirmed GG's role in the migration and proliferation pathways of keratinocytes. CONCLUSION: Our results suggest that AQP3 may act as a new novel actor in HS etio-pathogenesis, and GG could be further explored as potential treatment option for managing HS in patients.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4887485
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact