In an unbounded domain of RN , N > 2, we prove existence and Stampacchia type regularity of solutions to some noncoercive nonlinear Dirichlet problems whose model case appears in stationary convection-diffusion phenomena. The drift term is controlled through a function in a suitable functional space, strictly containing Lebesgue one. We obtain some a priori estimates, by contradiction, via a weak maximum principle.
On some noncoercive nonlinear problems in unbounded domains
Patrizia Di Gironimo;Sara Monsurro
;Gabriella Zecca
2024-01-01
Abstract
In an unbounded domain of RN , N > 2, we prove existence and Stampacchia type regularity of solutions to some noncoercive nonlinear Dirichlet problems whose model case appears in stationary convection-diffusion phenomena. The drift term is controlled through a function in a suitable functional space, strictly containing Lebesgue one. We obtain some a priori estimates, by contradiction, via a weak maximum principle.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DGMZ2 NoDEA.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
437.27 kB
Formato
Adobe PDF
|
437.27 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.