RationaleIonic liquids (ILs) are a subject of active research in the field of alternative solvents. We studied the behaviour of a piperidine IL, 1-butyl-1-methylpiperidinium tetrafluoroborate (BMPA), through the elucidation of its transformation products (TPs) in water.MethodsThe transformation pathways of BMPA were investigated using high-performance liquid chromatography (HPLC) combined with a hybrid LTQ-Orbitrap instrument on the basis of mass defect filtering. TPs of BMPA were identified by fragmentation patterns and accurate mass measurements.ResultsThe separation and identification of 32 TPs was achieved. BMPA can be oxidized at different positions in the alkyl chains. The ultimate products corresponds to N-methyl-piperidinium and some byproducts involving ring-opening. Tests of acute toxicity, evaluated with Vibrio Fischeri bacteria, show that BMPA transformation proceeds through the formation of slightly harmful compounds.ConclusionsResults showed that the main transformation pathways of BMPA were alkyl chain hydroxylation/shortening and de-alkylation, and that HPLC/LTQ-Orbitrap can serve as an important analytical platform to gather the unknown TPs of ILs.
High‐performance liquid chromatography/high‐resolution mass spectrometry for the characterization of transformation products of ionic liquids
Santoro, Valentina;
2017
Abstract
RationaleIonic liquids (ILs) are a subject of active research in the field of alternative solvents. We studied the behaviour of a piperidine IL, 1-butyl-1-methylpiperidinium tetrafluoroborate (BMPA), through the elucidation of its transformation products (TPs) in water.MethodsThe transformation pathways of BMPA were investigated using high-performance liquid chromatography (HPLC) combined with a hybrid LTQ-Orbitrap instrument on the basis of mass defect filtering. TPs of BMPA were identified by fragmentation patterns and accurate mass measurements.ResultsThe separation and identification of 32 TPs was achieved. BMPA can be oxidized at different positions in the alkyl chains. The ultimate products corresponds to N-methyl-piperidinium and some byproducts involving ring-opening. Tests of acute toxicity, evaluated with Vibrio Fischeri bacteria, show that BMPA transformation proceeds through the formation of slightly harmful compounds.ConclusionsResults showed that the main transformation pathways of BMPA were alkyl chain hydroxylation/shortening and de-alkylation, and that HPLC/LTQ-Orbitrap can serve as an important analytical platform to gather the unknown TPs of ILs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.