For a few decades, operators of energy systems have sought to achieve appropriate frameworks due to energy crises and rapid growth in energy requirements. In this regard, this study presents a multi-objective optimization model for an energy hub (EH) designed to manage a diverse energy portfolio. The EH receives electricity, natural gas, hydrogen, seawater, and solar energy as inputs, aiming to satisfy electricity, heating, and freshwater demands at the output port while considering a limited available area. The model incorporates the selection of the optimal solar energy technology (photovoltaics, parabolic dish, or parabolic trough collector) through a comprehensive evaluation encompassing technical, economic, and environmental aspects. To achieve optimal scheduling of the EH's production units, the model factors in forecasts of solar energy availability alongside electrical, heat, and water load demands. The evaluation of the EH's performance is conducted through a multi-objective framework considering social welfare, CO2 emissions, voltage stability margin (VSM), a newly proposed simplified fast temperature stability index (SFTSI), and a similarly novel simplified fast pressure stability index (SFPSI). The optimization problem is formulated within a MATLAB environment and solved using a multi-objective Archimedes optimization algorithm across five distinct case studies, each characterized by a varying designated area for solar energy generation. The effectiveness of the proposed model and optimization technique is validated through test systems, with the obtained results demonstrating significant improvements compared to a baseline scenario. These improvements include a 36.18% reduction in CO2 emissions, a 14.22% increase in total social welfare, and reductions in the average values of VSM, SFTSI, and SFPSI when incorporating all solar energy technologies.

Multi-Objective optimal scheduling of energy Hubs, integrating different solar generation technologies considering uncertainty

Siano P.;
2024

Abstract

For a few decades, operators of energy systems have sought to achieve appropriate frameworks due to energy crises and rapid growth in energy requirements. In this regard, this study presents a multi-objective optimization model for an energy hub (EH) designed to manage a diverse energy portfolio. The EH receives electricity, natural gas, hydrogen, seawater, and solar energy as inputs, aiming to satisfy electricity, heating, and freshwater demands at the output port while considering a limited available area. The model incorporates the selection of the optimal solar energy technology (photovoltaics, parabolic dish, or parabolic trough collector) through a comprehensive evaluation encompassing technical, economic, and environmental aspects. To achieve optimal scheduling of the EH's production units, the model factors in forecasts of solar energy availability alongside electrical, heat, and water load demands. The evaluation of the EH's performance is conducted through a multi-objective framework considering social welfare, CO2 emissions, voltage stability margin (VSM), a newly proposed simplified fast temperature stability index (SFTSI), and a similarly novel simplified fast pressure stability index (SFPSI). The optimization problem is formulated within a MATLAB environment and solved using a multi-objective Archimedes optimization algorithm across five distinct case studies, each characterized by a varying designated area for solar energy generation. The effectiveness of the proposed model and optimization technique is validated through test systems, with the obtained results demonstrating significant improvements compared to a baseline scenario. These improvements include a 36.18% reduction in CO2 emissions, a 14.22% increase in total social welfare, and reductions in the average values of VSM, SFTSI, and SFPSI when incorporating all solar energy technologies.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4888774
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 7
social impact