This study presents a novel approach to the development of high-performance supercapacitors through 3D printing technology. We synthesized a composite material consisting of silver-doped reduced graphene oxide (rGO) and dodecylbenzenesulfonic acid (DBSA)-doped polyaniline (PANI), which was further blended with polylactic acid (PLA) for additive manufacturing. The composite was extruded into filaments and printed into circular disc electrodes using fused deposition modeling (FDM). These electrodes were assembled into symmetric supercapacitor devices with a solid-state electrolyte. Electrochemical characterization, including cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests, demonstrated considerable mass-specific capacitance values of 136.2 F/g and 133 F/g at 20 mV/s and 1 A/g, respectively. The devices showed excellent stability, retaining 91% of their initial capacitance after 5000 cycles. The incorporation of silver nanoparticles enhanced the conductivity of rGO, while PANI-DBSA improved electrochemical stability and performance. This study highlights the potential of combining advanced materials with 3D printing to optimize energy storage devices, offering a significant advancement over traditional manufacturing methods.

Silver-Doped Reduced Graphene Oxide/PANI-DBSA-PLA Composite 3D-Printed Supercapacitors

Cirillo C.
;
Iuliano M.;Scarpa D.;Sarno M.
2024-01-01

Abstract

This study presents a novel approach to the development of high-performance supercapacitors through 3D printing technology. We synthesized a composite material consisting of silver-doped reduced graphene oxide (rGO) and dodecylbenzenesulfonic acid (DBSA)-doped polyaniline (PANI), which was further blended with polylactic acid (PLA) for additive manufacturing. The composite was extruded into filaments and printed into circular disc electrodes using fused deposition modeling (FDM). These electrodes were assembled into symmetric supercapacitor devices with a solid-state electrolyte. Electrochemical characterization, including cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests, demonstrated considerable mass-specific capacitance values of 136.2 F/g and 133 F/g at 20 mV/s and 1 A/g, respectively. The devices showed excellent stability, retaining 91% of their initial capacitance after 5000 cycles. The incorporation of silver nanoparticles enhanced the conductivity of rGO, while PANI-DBSA improved electrochemical stability and performance. This study highlights the potential of combining advanced materials with 3D printing to optimize energy storage devices, offering a significant advancement over traditional manufacturing methods.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4889475
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact