The use of Artificial Neural Networks (ANNs) has spread massively in several research fields. Among the various applications, ANNs have been exploited for the solution of Partial Differential Equations (PDEs). In this context, the so-called Physics-Informed Neural Networks (PINNs) are considered, i.e. neural networks generally constructed in such a way as to compute a continuous approximation in time and space of the exact solution of a PDE. In this manuscript, we propose a new step-by-step approach that allows to define PINNs capable of providing numerical solutions of PDEs that are discrete in time and continuous in space. This is done by establishing connections between the network outputs and the numerical approximations computed by a classical one-stage method for stiff Initial Value Problems (IVPs). Links are also highlighted between the step-by-step PINNs derived here, and the time discrete models based on Runge–Kutta (RK) methods proposed so far in literature. To evaluate the efficiency of the new approach, we build such PINNs to solve a nonlinear diffusion–reaction PDE model describing the process of production of renewable energy through dye-sensitized solar cells. The numerical experiments show that not only the new step-by-step PINNs are able to well reproduce the model solution, but also highlight that the proposed approach can constitute an improvement over existing continuous and time discrete models.

Step-by-step time discrete Physics-Informed Neural Networks with application to a sustainability PDE model

Valentino C.;Pagano G.;Conte D.
;
Paternoster B.;Colace F.;Casillo M.
2025-01-01

Abstract

The use of Artificial Neural Networks (ANNs) has spread massively in several research fields. Among the various applications, ANNs have been exploited for the solution of Partial Differential Equations (PDEs). In this context, the so-called Physics-Informed Neural Networks (PINNs) are considered, i.e. neural networks generally constructed in such a way as to compute a continuous approximation in time and space of the exact solution of a PDE. In this manuscript, we propose a new step-by-step approach that allows to define PINNs capable of providing numerical solutions of PDEs that are discrete in time and continuous in space. This is done by establishing connections between the network outputs and the numerical approximations computed by a classical one-stage method for stiff Initial Value Problems (IVPs). Links are also highlighted between the step-by-step PINNs derived here, and the time discrete models based on Runge–Kutta (RK) methods proposed so far in literature. To evaluate the efficiency of the new approach, we build such PINNs to solve a nonlinear diffusion–reaction PDE model describing the process of production of renewable energy through dye-sensitized solar cells. The numerical experiments show that not only the new step-by-step PINNs are able to well reproduce the model solution, but also highlight that the proposed approach can constitute an improvement over existing continuous and time discrete models.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4889555
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact