We extend Yosida's 1941 version of Stone-Gelfand duality to metrically complete unital lattice-ordered groups that are no longer required to be real vector spaces. This calls for a generalised notion of compact Hausdorff space whose points carry an arithmetic character to be preserved by continuous maps. The arithmetic character of a point is (the complete isomorphism invariant of) a metrically complete additive subgroup of the real numbers containing 1—namely, either 1nZ for an integer n=1,2,…, or the whole of R. The main result needed to establish the extended duality theorem is a substantial generalisation of Urysohn's Lemma to such “arithmetic” compact Hausdorff spaces. The original duality is obtained by considering the full subcategory of spaces every point of which is assigned the entire group of real numbers. In the Introduction we indicate motivations from and connections with the theory of dimension groups.
Stone-Gelfand duality for metrically complete lattice-ordered groups
Abbadini, Marco;Spada, Luca
2024-01-01
Abstract
We extend Yosida's 1941 version of Stone-Gelfand duality to metrically complete unital lattice-ordered groups that are no longer required to be real vector spaces. This calls for a generalised notion of compact Hausdorff space whose points carry an arithmetic character to be preserved by continuous maps. The arithmetic character of a point is (the complete isomorphism invariant of) a metrically complete additive subgroup of the real numbers containing 1—namely, either 1nZ for an integer n=1,2,…, or the whole of R. The main result needed to establish the extended duality theorem is a substantial generalisation of Urysohn's Lemma to such “arithmetic” compact Hausdorff spaces. The original duality is obtained by considering the full subcategory of spaces every point of which is assigned the entire group of real numbers. In the Introduction we indicate motivations from and connections with the theory of dimension groups.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.