Abstract: Various healthcare domains have witnessed successful preliminary implementation of artificial intelligence (AI) solutions, including radiology, though limited generalizability hinders their widespread adoption. Currently, most research groups and industry have limited access to the data needed for external validation studies. The creation and accessibility of benchmark datasets to validate such solutions represents a critical step towards generalizability, for which an array of aspects ranging from preprocessing to regulatory issues and biostatistical principles come into play. In this article, the authors provide recommendations for the creation of benchmark datasets in radiology, explain current limitations in this realm, and explore potential new approaches. Clinical relevance statement: Benchmark datasets, facilitating validation of AI software performance can contribute to the adoption of AI in clinical practice. Key Points: Benchmark datasets are essential for the validation of AI software performance. Factors like image quality and representativeness of cases should be considered. Benchmark datasets can help adoption by increasing the trustworthiness and robustness of AI. Graphical Abstract: (Figure presented.)

Recommendations for the creation of benchmark datasets for reproducible artificial intelligence in radiology

Cuocolo R.;
2024

Abstract

Abstract: Various healthcare domains have witnessed successful preliminary implementation of artificial intelligence (AI) solutions, including radiology, though limited generalizability hinders their widespread adoption. Currently, most research groups and industry have limited access to the data needed for external validation studies. The creation and accessibility of benchmark datasets to validate such solutions represents a critical step towards generalizability, for which an array of aspects ranging from preprocessing to regulatory issues and biostatistical principles come into play. In this article, the authors provide recommendations for the creation of benchmark datasets in radiology, explain current limitations in this realm, and explore potential new approaches. Clinical relevance statement: Benchmark datasets, facilitating validation of AI software performance can contribute to the adoption of AI in clinical practice. Key Points: Benchmark datasets are essential for the validation of AI software performance. Factors like image quality and representativeness of cases should be considered. Benchmark datasets can help adoption by increasing the trustworthiness and robustness of AI. Graphical Abstract: (Figure presented.)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4896538
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact