Spinacia oleracea L. cultivar platypus leaves are identified as a functional food due to their nutrient composition which promotes health beyond basic nutrition. Considering the increasing use of food supplements, S. oleracea baby leaves have been extracted by maceration, solid–liquid dynamic extraction (SLDE)-Naviglio, and ultrasound-assisted extraction (UAE) using EtOH and EtOH:H2O mixtures. The analysis of the extracts by using LC-ESI/HRMSMS revealed 42 compounds (flavonoids, polar lipid derivatives, and 20-hydroxyecdysone), along with primary metabolites, detected by NMR analysis. A principal component analysis (PCA) of LC-ESI/HRMS and NMR data was performed, revealing how 20-hydroxyecdysone and flavonoids, the specialized metabolites mainly responsible for the biological activity of S. oleracea leaves, occurred in the highest amount in the EtOH and EtOH:H2O (70:30, v/v) extracts obtained by SLDE-Naviglio extraction. 20-hydroxyecdysone was also quantified in all the extracts via LC-ESI/QTrap/MS/MS using the Multiple Reaction Monitoring (MRM) method. The EtOH extracts obtained by SLDE-Naviglio and maceration showed the highest content (82.16 and 81.27 mg/g extract, respectively). The total phenolic content (118.35–206.60 mg GAE/g), the flavonoid content (10.90–41.05 mg rutin/g), and the Trolox Equivalent Antioxidant Capacity (TEAC) (1.63–2.05 mM) of the extracts were determined. The EtOH:H2O (70:30, v/v) extract analyzed by using SLDE-Naviglio showed the highest phenolic and flavonoid content and radical scavenging activity.

Spinacia oleracea L. Baby Leaves as a Source of Bioactive Principles: The Chemical Profiling of Eco-Sustainable Extracts by Using LC-ESI/HRMS- and 1H NMR-Based Metabolomics

Cerulli A.;Polcaro L. M.;Masullo M.;Piacente S.
2024-01-01

Abstract

Spinacia oleracea L. cultivar platypus leaves are identified as a functional food due to their nutrient composition which promotes health beyond basic nutrition. Considering the increasing use of food supplements, S. oleracea baby leaves have been extracted by maceration, solid–liquid dynamic extraction (SLDE)-Naviglio, and ultrasound-assisted extraction (UAE) using EtOH and EtOH:H2O mixtures. The analysis of the extracts by using LC-ESI/HRMSMS revealed 42 compounds (flavonoids, polar lipid derivatives, and 20-hydroxyecdysone), along with primary metabolites, detected by NMR analysis. A principal component analysis (PCA) of LC-ESI/HRMS and NMR data was performed, revealing how 20-hydroxyecdysone and flavonoids, the specialized metabolites mainly responsible for the biological activity of S. oleracea leaves, occurred in the highest amount in the EtOH and EtOH:H2O (70:30, v/v) extracts obtained by SLDE-Naviglio extraction. 20-hydroxyecdysone was also quantified in all the extracts via LC-ESI/QTrap/MS/MS using the Multiple Reaction Monitoring (MRM) method. The EtOH extracts obtained by SLDE-Naviglio and maceration showed the highest content (82.16 and 81.27 mg/g extract, respectively). The total phenolic content (118.35–206.60 mg GAE/g), the flavonoid content (10.90–41.05 mg rutin/g), and the Trolox Equivalent Antioxidant Capacity (TEAC) (1.63–2.05 mM) of the extracts were determined. The EtOH:H2O (70:30, v/v) extract analyzed by using SLDE-Naviglio showed the highest phenolic and flavonoid content and radical scavenging activity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4903095
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact