In this paper, we consider stochastic Hamiltonian systems of Itô type driven by a multiplicative small noise. It is well-known, indeed, that stochastic Hamiltonian problems are suitable candidates to reconcile the Hamiltonian classical mechanics with the non-differentiability of the Wiener process, which provides the innovative character of stochastic effects. In particular, in this work, we provide a characterization of the behavior of averaged Hamiltonians arised in such systems, with more emphasis on the separable and quadratic Hamiltonians. Next, we show that, in general, first order approximations to such systems are not able to retain the same behavior discovered for the exact averaged Hamiltonian. Hence, the analysis for the specific case of ϑ-methods is performed. Finally, numerical evidence is depicted in order to confirm theoretical results.

On the conservative character of discretizations to Itô-Hamiltonian systems with small noise

Paternoster, B.
2023

Abstract

In this paper, we consider stochastic Hamiltonian systems of Itô type driven by a multiplicative small noise. It is well-known, indeed, that stochastic Hamiltonian problems are suitable candidates to reconcile the Hamiltonian classical mechanics with the non-differentiability of the Wiener process, which provides the innovative character of stochastic effects. In particular, in this work, we provide a characterization of the behavior of averaged Hamiltonians arised in such systems, with more emphasis on the separable and quadratic Hamiltonians. Next, we show that, in general, first order approximations to such systems are not able to retain the same behavior discovered for the exact averaged Hamiltonian. Hence, the analysis for the specific case of ϑ-methods is performed. Finally, numerical evidence is depicted in order to confirm theoretical results.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4905016
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact