This manuscript reviews our recently developed theory, the dynamical projective operatorial approach (DPOA), for studying pump-probe setups in ultra-fast regimes. After reviewing the general formulation of the DPOA, we focus on its lattice version and provide a formalism that is particularly suitable for several pumped semiconductors. Within the DPOA, we also compute the TR-ARPES signal through out-of-equilibrium Green's functions and establish an out-of-equilibrium counterpart of the fluctuation-dissipation theorem. Moreover, we generalize the linear response theory to pumped systems and address, within the DPOA, the differential transient optical properties, providing an overall robust theoretical and computational framework for studying pump-probe setups. Considering a minimal model for a semiconductor, we illustrate the capabilities of the DPOA and discuss several features emerging in this case study that are relevant to real materials.

Dynamical Projective Operatorial Approach (DPOA): Theory and Applications to Pump–Probe Setups and Semiconductors

Eskandariasl, Amir;Avella, Adolfo
2025

Abstract

This manuscript reviews our recently developed theory, the dynamical projective operatorial approach (DPOA), for studying pump-probe setups in ultra-fast regimes. After reviewing the general formulation of the DPOA, we focus on its lattice version and provide a formalism that is particularly suitable for several pumped semiconductors. Within the DPOA, we also compute the TR-ARPES signal through out-of-equilibrium Green's functions and establish an out-of-equilibrium counterpart of the fluctuation-dissipation theorem. Moreover, we generalize the linear response theory to pumped systems and address, within the DPOA, the differential transient optical properties, providing an overall robust theoretical and computational framework for studying pump-probe setups. Considering a minimal model for a semiconductor, we illustrate the capabilities of the DPOA and discuss several features emerging in this case study that are relevant to real materials.
2025
File in questo prodotto:
File Dimensione Formato  
2025 - Materials 18, 1310 (2025).pdf

accesso aperto

Descrizione: VoR
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 954.15 kB
Formato Adobe PDF
954.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4905116
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact