: Electroencephalography is a widely used non-invasive method for monitoring brain electrical activity, critical for diagnosing and managing neurological disorders such as epilepsy. While clinical standards use 21 electrodes to capture comprehensive neural signals, a personalized approach can enhance performance by selecting patient-specific channels, reducing noise and redundancy. This study introduces an innovative, lightweight deep learning system optimized for real-time seizure detection in personalized wearable devices. The system uses an efficient Convolutional Neural Network that processes data from just two channels. These channels are automatically selected using a data-driven mechanism that identifies the most informative scalp regions based on each patient's unique seizure patterns. The proposed approach ensures high reliability, even with small datasets, and improves interpretability for clinicians by overcoming the limitations of more complex methods. The tailored channel selection boosts detection accuracy and ensures robust performance across different seizure types while reducing the computational burden typical of multi-electrode systems. Validation on the publicly available CHB-MIT dataset achieved an average balanced accuracy of 0.83 and a false-positive rate of approximately 0.1/h. The system's performance matches, and in some cases outperforms, state-of-the-art systems that use four fixed channels in temporal regions, demonstrating the potential of two-channel wearable solutions, specifically with a non-negligible 30% reduction in the false-positive rate. This interpretable, patient-specific method enables the development of personalized, efficient, and compact wearable devices for reliable seizure detection in everyday life.

Personalizing Seizure Detection for Individual Patients by Optimal Selection of EEG Signals

Ferrara, Rosanna;Giaquinto, Martino
;
Percannella, Gennaro;Rundo, Leonardo;Saggese, Alessia
2025

Abstract

: Electroencephalography is a widely used non-invasive method for monitoring brain electrical activity, critical for diagnosing and managing neurological disorders such as epilepsy. While clinical standards use 21 electrodes to capture comprehensive neural signals, a personalized approach can enhance performance by selecting patient-specific channels, reducing noise and redundancy. This study introduces an innovative, lightweight deep learning system optimized for real-time seizure detection in personalized wearable devices. The system uses an efficient Convolutional Neural Network that processes data from just two channels. These channels are automatically selected using a data-driven mechanism that identifies the most informative scalp regions based on each patient's unique seizure patterns. The proposed approach ensures high reliability, even with small datasets, and improves interpretability for clinicians by overcoming the limitations of more complex methods. The tailored channel selection boosts detection accuracy and ensures robust performance across different seizure types while reducing the computational burden typical of multi-electrode systems. Validation on the publicly available CHB-MIT dataset achieved an average balanced accuracy of 0.83 and a false-positive rate of approximately 0.1/h. The system's performance matches, and in some cases outperforms, state-of-the-art systems that use four fixed channels in temporal regions, demonstrating the potential of two-channel wearable solutions, specifically with a non-negligible 30% reduction in the false-positive rate. This interpretable, patient-specific method enables the development of personalized, efficient, and compact wearable devices for reliable seizure detection in everyday life.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4908018
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact