This paper concerns the experimental validation of optimized near-field (NF) spherical spiral scannings employing a minimum number of samples, when an offset-mounted elongated antenna under test (AUT), i.e., with its center shifted with respect to that of the measurement sphere, is considered. In order to perform the standard NF/far-field transformation (NF/FFT) technique, a non-centered AUT would generally require the collection of a significantly increased amount of voltage data if compared to the onset scenario. This issue is addressed here by using the non-redundant (NR) sampling representations of electromagnetic (EM) fields. These representations, by leveraging the analytical properties of the EM field, allow one to perform the NR NF/FFTs for offset-mounted AUTs by using only a minimum number of (offset acquired) samples, equal to that required by the NR approaches for the onset case (over 85% fewer samples compared to the standard NF spherical scanning). In particular, these NR NF/FFTs are obtained by modeling the AUT with a prolate spheroid or a rounded cylinder and their effectiveness is fully assessed by the reported experimental results.
Minimum Data Spherical Spiral NF/FF Transformations for Offset-Mounted Elongated AUTs: An Experimental Validation
D'Agostino F.;Ferrara F.;Gennarelli C.;Guerriero R.;Migliozzi M.;Pascarella L.;Riccio G.
2025
Abstract
This paper concerns the experimental validation of optimized near-field (NF) spherical spiral scannings employing a minimum number of samples, when an offset-mounted elongated antenna under test (AUT), i.e., with its center shifted with respect to that of the measurement sphere, is considered. In order to perform the standard NF/far-field transformation (NF/FFT) technique, a non-centered AUT would generally require the collection of a significantly increased amount of voltage data if compared to the onset scenario. This issue is addressed here by using the non-redundant (NR) sampling representations of electromagnetic (EM) fields. These representations, by leveraging the analytical properties of the EM field, allow one to perform the NR NF/FFTs for offset-mounted AUTs by using only a minimum number of (offset acquired) samples, equal to that required by the NR approaches for the onset case (over 85% fewer samples compared to the standard NF spherical scanning). In particular, these NR NF/FFTs are obtained by modeling the AUT with a prolate spheroid or a rounded cylinder and their effectiveness is fully assessed by the reported experimental results.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.