Highlights: What are the main findings? Power management: Peak demand reduction and DER utilization via PV-based microgrid. Active power loss and voltage fluctuations reduction. What is the implication of the main finding? Coordinated control of Volt-Var devices with grid-connected microgrid. Effective utilization of system components, and determining the optimum working conditions of the system. A coordinated control for the volt-var optimization (VVO) problem is presented using load tap changer transformers, voltage regulators, and capacitor banks with the integration of a PV-based microgrid. The harmony search (HS) algorithm, which is a metaheuristic-based optimization algorithm, was used to determine global optimum settings of related devices to operate efficiently under changing conditions. The major objectives of volt-var optimization were to reduce power losses, peak power demands, and voltage variations in the distribution circuit while maintaining voltages within the permitted range at all nodes and under all loading conditions. The problem was a mixed integer nonlinear problem with discrete integer variables; binary variables for the capacitor status on/off, voltage regulator taps as integers, and continuous variables; the current output of the microgrid; and nonlinear electric circuit equations. The simulations were verified using the IEEE 13-node test circuit. Daily load profiles of the main power system grid and the microgrid’s PV were used with a 15 min resolution. Power flow solutions were produced using the OpenDSS (version 9.5.1.1, year 2022) power distribution system solver. It can be applied to operational and planning purposes. The results showed that active power loss, peak power demand, and voltage fluctuation were significantly reduced by the coordinated control of the volt-var problem.

Coordinated Control of the Volt-Var Optimization Problem Under PV-Based Microgrid Integration into the Power Distribution System: Using the Harmony Search Algorithm

Siano P.;
2025

Abstract

Highlights: What are the main findings? Power management: Peak demand reduction and DER utilization via PV-based microgrid. Active power loss and voltage fluctuations reduction. What is the implication of the main finding? Coordinated control of Volt-Var devices with grid-connected microgrid. Effective utilization of system components, and determining the optimum working conditions of the system. A coordinated control for the volt-var optimization (VVO) problem is presented using load tap changer transformers, voltage regulators, and capacitor banks with the integration of a PV-based microgrid. The harmony search (HS) algorithm, which is a metaheuristic-based optimization algorithm, was used to determine global optimum settings of related devices to operate efficiently under changing conditions. The major objectives of volt-var optimization were to reduce power losses, peak power demands, and voltage variations in the distribution circuit while maintaining voltages within the permitted range at all nodes and under all loading conditions. The problem was a mixed integer nonlinear problem with discrete integer variables; binary variables for the capacitor status on/off, voltage regulator taps as integers, and continuous variables; the current output of the microgrid; and nonlinear electric circuit equations. The simulations were verified using the IEEE 13-node test circuit. Daily load profiles of the main power system grid and the microgrid’s PV were used with a 15 min resolution. Power flow solutions were produced using the OpenDSS (version 9.5.1.1, year 2022) power distribution system solver. It can be applied to operational and planning purposes. The results showed that active power loss, peak power demand, and voltage fluctuation were significantly reduced by the coordinated control of the volt-var problem.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4916580
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact