This paper introduces a data-driven methodology for accurately estimating the residual capacity (RC) of lithium iron phosphate (LFP) batteries through a tailored artificial neural network (ANN) architecture. The proposed model integrates a long short-term memory (LSTM) layer with a fully connected layer, leveraging their combined strengths to achieve precise RC predictions. A distinguishing feature of this study is its ability to deliver highly accurate estimates using a limited dataset that was derived from a single cylindrical LFP battery with a 40 Ah capacity and collected during a controlled experimental campaign. Despite the constraints imposed by the dataset size, the ANN demonstrates remarkable performance, underscoring the model’s capability to operate effectively with minimal data. The dataset is partitioned into the training and testing subsets to ensure a rigorous evaluation. Additionally, the robustness of the approach is validated by testing the trained ANN on data from a second battery cell subjected to a distinct aging process, which was entirely unseen during training. This critical aspect underscores the method’s applicability in estimating RC for batteries with varying aging profiles, a key requirement for real-world deployment. The proposed LSTM-based architecture was also benchmarked against a GRU-based model, yielding significantly lower prediction errors. Furthermore, beyond LFP chemistry, the method was tested on a broader NMC dataset comprising seven cells aged under different C-rates and temperatures, where it maintained high accuracy, confirming its scalability and robustness across chemistries and usage conditions. These results advance battery management systems by offering a robust, efficient modeling framework that optimizes battery utilization across diverse applications, even under data-constrained conditions.

Artificial Neural Networks for Residual Capacity Estimation of Cycle-Aged Cylindric LFP Batteries

Roberta Merolla;
2025

Abstract

This paper introduces a data-driven methodology for accurately estimating the residual capacity (RC) of lithium iron phosphate (LFP) batteries through a tailored artificial neural network (ANN) architecture. The proposed model integrates a long short-term memory (LSTM) layer with a fully connected layer, leveraging their combined strengths to achieve precise RC predictions. A distinguishing feature of this study is its ability to deliver highly accurate estimates using a limited dataset that was derived from a single cylindrical LFP battery with a 40 Ah capacity and collected during a controlled experimental campaign. Despite the constraints imposed by the dataset size, the ANN demonstrates remarkable performance, underscoring the model’s capability to operate effectively with minimal data. The dataset is partitioned into the training and testing subsets to ensure a rigorous evaluation. Additionally, the robustness of the approach is validated by testing the trained ANN on data from a second battery cell subjected to a distinct aging process, which was entirely unseen during training. This critical aspect underscores the method’s applicability in estimating RC for batteries with varying aging profiles, a key requirement for real-world deployment. The proposed LSTM-based architecture was also benchmarked against a GRU-based model, yielding significantly lower prediction errors. Furthermore, beyond LFP chemistry, the method was tested on a broader NMC dataset comprising seven cells aged under different C-rates and temperatures, where it maintained high accuracy, confirming its scalability and robustness across chemistries and usage conditions. These results advance battery management systems by offering a robust, efficient modeling framework that optimizes battery utilization across diverse applications, even under data-constrained conditions.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4916658
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact