To ensure security and stable quality, deeper cybersecurity evaluations are essential for the development of safety features and functionalities in vehicles. Among these, the AEB system is the most relevant. This research presents a comprehensive TARA of the AEB system, emphasizing the identification, validation, and mitigation of major cybersecurity threats and risks. We systematically examine potential attack vectors by utilizing the STRIDE threat model. This approach enables a detailed analysis of each security threat associated with AEB systems, providing insights into how malicious actors could use the attack paths. The assessment aligns with ISO/SAE 21434, which offers a robust framework for risk management in automotive cybersecurity and IT security, ensuring a thorough evaluation of a system’s architecture. By assessing the AEB system’s architecture against these standards, we identify key components and communication pathways that may be particularly prone to cyberattacks. The results of this analysis highlight critical flaws within the AEB framework and propose corrective measures to enhance cybersecurity resilience. This article provides a structured methodology for assessing and mitigating automotive cybersecurity risks in compliance with industry standards, aiming to facilitate the safe implementation of AEB technology and ultimately improve overall vehicle security and safety.

Threat Analysis and Risk Assessment (TARA) Analysis of an Autonomous Emergency Braking (AEB) System

Della Monica U.;Boi B.;Esposito C.;Khondoker R.
2025

Abstract

To ensure security and stable quality, deeper cybersecurity evaluations are essential for the development of safety features and functionalities in vehicles. Among these, the AEB system is the most relevant. This research presents a comprehensive TARA of the AEB system, emphasizing the identification, validation, and mitigation of major cybersecurity threats and risks. We systematically examine potential attack vectors by utilizing the STRIDE threat model. This approach enables a detailed analysis of each security threat associated with AEB systems, providing insights into how malicious actors could use the attack paths. The assessment aligns with ISO/SAE 21434, which offers a robust framework for risk management in automotive cybersecurity and IT security, ensuring a thorough evaluation of a system’s architecture. By assessing the AEB system’s architecture against these standards, we identify key components and communication pathways that may be particularly prone to cyberattacks. The results of this analysis highlight critical flaws within the AEB framework and propose corrective measures to enhance cybersecurity resilience. This article provides a structured methodology for assessing and mitigating automotive cybersecurity risks in compliance with industry standards, aiming to facilitate the safe implementation of AEB technology and ultimately improve overall vehicle security and safety.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4917079
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact