A group G is said to be ambivalent if every element of G is conjugate to its inverse. In the present paper, we investigate several properties of ambivalent groups, establishing structural restrictions when the group is either nilpotent or periodic. Additionally, we examine the fixed-point-free case and provide a presentation of the group when it is not 2-nilpotent. This investigation sheds light on the structure of ambivalent groups that possess a strongly embedded subgroup.

On ambivalent groups

Delizia, Costantino;Monetta, Carmine
;
Nicotera, Chiara
2025

Abstract

A group G is said to be ambivalent if every element of G is conjugate to its inverse. In the present paper, we investigate several properties of ambivalent groups, establishing structural restrictions when the group is either nilpotent or periodic. Additionally, we examine the fixed-point-free case and provide a presentation of the group when it is not 2-nilpotent. This investigation sheds light on the structure of ambivalent groups that possess a strongly embedded subgroup.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4918755
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact