In this article, a novel procedure is developed to properly handle the 3-D mispositioning of the scanning probe in the near-field to far-field (NFtFF) transformations with spherical scanning for quasi-planar antennas under test, which make use of a non-redundant (NR) number of samples. It proceeds through two stages. In the former, a phase correction technique, named spherical wave correction, is applied to compensate for the phase shifts of the collected NF samples, which do not belong to the measurement sphere, due to mechanical defects of the arc, or inaccuracy of the robotic arm employed in the considered NF facility driving the probe. Once the phase shifts have been compensated, the recovered NF samples belong to the set spherical surface, but their positions differ from those prescribed by the adopted NR representation, because of an imprecise control and/or inaccuracy of the positioning system. Thus, the resulting sampling arrangement is affected by 2-D mispositioning errors. Accordingly, an iterative procedure is used in the latter step to restore the NF samples at their exact locations from those determined at the first step. Once the correct sampling arrangement has been retrieved from the 3-D mispositioned one, an optimal sampling interpolation formula is employed to obtain the massive input NF data necessary for the classical spherical NFtFF transformation technique. Numerical results, showing the precision of the NF and FF reconstructions, assessed the efficacy of the developed procedure.

An Effective Two-Step Procedure Allowing the Retrieval of the Non-Redundant Spherical Near-Field Samples from the 3-D Mispositioned Ones

D'Agostino F.;Ferrara F.;Gennarelli C.;Guerriero R.;Migliozzi M.;Pascarella L.
2025

Abstract

In this article, a novel procedure is developed to properly handle the 3-D mispositioning of the scanning probe in the near-field to far-field (NFtFF) transformations with spherical scanning for quasi-planar antennas under test, which make use of a non-redundant (NR) number of samples. It proceeds through two stages. In the former, a phase correction technique, named spherical wave correction, is applied to compensate for the phase shifts of the collected NF samples, which do not belong to the measurement sphere, due to mechanical defects of the arc, or inaccuracy of the robotic arm employed in the considered NF facility driving the probe. Once the phase shifts have been compensated, the recovered NF samples belong to the set spherical surface, but their positions differ from those prescribed by the adopted NR representation, because of an imprecise control and/or inaccuracy of the positioning system. Thus, the resulting sampling arrangement is affected by 2-D mispositioning errors. Accordingly, an iterative procedure is used in the latter step to restore the NF samples at their exact locations from those determined at the first step. Once the correct sampling arrangement has been retrieved from the 3-D mispositioned one, an optimal sampling interpolation formula is employed to obtain the massive input NF data necessary for the classical spherical NFtFF transformation technique. Numerical results, showing the precision of the NF and FF reconstructions, assessed the efficacy of the developed procedure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4919737
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact