In [6], we developed the deformation theory of symplectic foliations, focusing on geometric aspects. Here, we address some algebraic questions that arose naturally. We show that the L∞-algebra constructed in [6] is independent of the choices made, and we prove that the gauge equivalence of Maurer–Cartan elements corresponds to the equivalence by isotopies of symplectic foliations.

Deformations of symplectic foliations: algebraic aspects

Geudens S.
;
Tortorella A. G.;
2025

Abstract

In [6], we developed the deformation theory of symplectic foliations, focusing on geometric aspects. Here, we address some algebraic questions that arose naturally. We show that the L∞-algebra constructed in [6] is independent of the choices made, and we prove that the gauge equivalence of Maurer–Cartan elements corresponds to the equivalence by isotopies of symplectic foliations.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4919835
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact