In this paper we introduce a block-by-block method for the numerical solution of multi-term fractional differential equations (MFDEs). The main idea is to convert a MFDE to a Volterra integral equation of weakly singular type, to which a well known block-by-block method is applied. We also provide the error analysis and convergence of the method. Finally, numerical examples involving Bagley-Torvik and relaxation-oscillation equations are given to confirm applications and the theoretical results.

Approximate solution of multi-term fractional differential equations via a block-by-block method

Conte Dajana
2025

Abstract

In this paper we introduce a block-by-block method for the numerical solution of multi-term fractional differential equations (MFDEs). The main idea is to convert a MFDE to a Volterra integral equation of weakly singular type, to which a well known block-by-block method is applied. We also provide the error analysis and convergence of the method. Finally, numerical examples involving Bagley-Torvik and relaxation-oscillation equations are given to confirm applications and the theoretical results.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4920299
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact