In the present paper, we examine the generating properties of Sidki's weak commutativity group. More precisely, if G and G phi are two isomorphic groups, the weak commutativity group chi ( G ) is the group generated by G and G phi subject to the relations [ g , g phi ] = 1 for all g is an element of G. Here we provide bounds for the number of generators of some subgroups of chi ( G ) when G is a p-group of odd order and either G is powerful or D ( G ) is abelian.

On generating properties of the weak commutativity of p-groups, p odd

Monetta C.
2025

Abstract

In the present paper, we examine the generating properties of Sidki's weak commutativity group. More precisely, if G and G phi are two isomorphic groups, the weak commutativity group chi ( G ) is the group generated by G and G phi subject to the relations [ g , g phi ] = 1 for all g is an element of G. Here we provide bounds for the number of generators of some subgroups of chi ( G ) when G is a p-group of odd order and either G is powerful or D ( G ) is abelian.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4921899
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact