Background/Objectives: The COVID-19 pandemic highlighted how infodemics—an excessive amount of both accurate and misleading information—undermine health responses. Artificial intelligence (AI) and digital tools have been increasingly applied to monitor, detect, and counter health misinformation online. This scoping review aims to systematically map digital and AI-based interventions, describing their applications, outcomes, ethical and equity implications, and policy frameworks. Methods: This review followed the Joanna Briggs Institute methodology and was reported according to PRISMA-ScR. The protocol was preregistered on the Open Science Framework. Searches were conducted in PubMed/MEDLINE, Scopus, Web of Science, and CINAHL (January 2017–March 2025). Two reviewers independently screened titles/abstracts and full texts; disagreements were resolved by a third reviewer. Data extraction included study characteristics, populations, technologies, outcomes, thematic areas, and domains. Quantitative synthesis used descriptive statistics with 95% confidence intervals. Results: A total of 63 studies were included, most published between 2020 and 2024. The majority originated from the Americas (41.3%), followed by Europe (15.9%), the Western Pacific (9.5%), and other regions; 22.2% had a global scope. The most frequent thematic areas were monitoring/surveillance (54.0%) and health communication (42.9%), followed by education/training, AI/ML model development, and digital engagement tools. The domains most often addressed were applications (63.5%), responsiveness, policies/strategies, ethical concerns, and equity/accessibility. Conclusions: AI and digital tools provide significant contributions in detecting misinformation, strengthening surveillance, and promoting health literacy. However, evidence remains heterogeneous, with geographic imbalances, reliance on proxy outcomes, and limited focus on vulnerable groups. Scaling these interventions requires transparent governance, multilingual datasets, ethical safeguards, and integration into public health infrastructures.
Artificial Intelligence and Digital Technologies Against Health Misinformation: A Scoping Review of Public Health Responses
Angelo CianciulliProject Administration
;Roberta ManenteMembro del Collaboration Group
;Antonietta PacificoMembro del Collaboration Group
;
2025
Abstract
Background/Objectives: The COVID-19 pandemic highlighted how infodemics—an excessive amount of both accurate and misleading information—undermine health responses. Artificial intelligence (AI) and digital tools have been increasingly applied to monitor, detect, and counter health misinformation online. This scoping review aims to systematically map digital and AI-based interventions, describing their applications, outcomes, ethical and equity implications, and policy frameworks. Methods: This review followed the Joanna Briggs Institute methodology and was reported according to PRISMA-ScR. The protocol was preregistered on the Open Science Framework. Searches were conducted in PubMed/MEDLINE, Scopus, Web of Science, and CINAHL (January 2017–March 2025). Two reviewers independently screened titles/abstracts and full texts; disagreements were resolved by a third reviewer. Data extraction included study characteristics, populations, technologies, outcomes, thematic areas, and domains. Quantitative synthesis used descriptive statistics with 95% confidence intervals. Results: A total of 63 studies were included, most published between 2020 and 2024. The majority originated from the Americas (41.3%), followed by Europe (15.9%), the Western Pacific (9.5%), and other regions; 22.2% had a global scope. The most frequent thematic areas were monitoring/surveillance (54.0%) and health communication (42.9%), followed by education/training, AI/ML model development, and digital engagement tools. The domains most often addressed were applications (63.5%), responsiveness, policies/strategies, ethical concerns, and equity/accessibility. Conclusions: AI and digital tools provide significant contributions in detecting misinformation, strengthening surveillance, and promoting health literacy. However, evidence remains heterogeneous, with geographic imbalances, reliance on proxy outcomes, and limited focus on vulnerable groups. Scaling these interventions requires transparent governance, multilingual datasets, ethical safeguards, and integration into public health infrastructures.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


