Generative art is a challenging area of research in deep generative modeling. Exploring AI’s role in human–machine co-creative processes requires understanding machine learning’s potential in the arts. Building on this premise, this paper presents Musipainter, a cross-modal generative framework adapted to create artistic images that are historically and stylistically aligned with 30-second musical inputs, with a focus on creative and semantic coherence. To support this goal, we introduce Museart, a dataset designed explicitly for this research, and GIILS, a creativity-oriented metric that enables us to assess both artistic-semantic consistency and diversity in the generated outputs. The results indicate that Musipainter, supported by the Museart dataset and the exploratory GIILS metric, can offer a foundation for further research on AI’s role in artistic generation, while also highlighting the need for systematic validation and future refinements.

Musipainter: A music-conditioned generative architecture for artistic image synthesis

Alfredo Baione
Data Curation
;
Giuseppe Rizzo
Validation
;
Luigi Di Biasi
Writing – Review & Editing
;
Genoveffa Tortora
Supervision
2026

Abstract

Generative art is a challenging area of research in deep generative modeling. Exploring AI’s role in human–machine co-creative processes requires understanding machine learning’s potential in the arts. Building on this premise, this paper presents Musipainter, a cross-modal generative framework adapted to create artistic images that are historically and stylistically aligned with 30-second musical inputs, with a focus on creative and semantic coherence. To support this goal, we introduce Museart, a dataset designed explicitly for this research, and GIILS, a creativity-oriented metric that enables us to assess both artistic-semantic consistency and diversity in the generated outputs. The results indicate that Musipainter, supported by the Museart dataset and the exploratory GIILS metric, can offer a foundation for further research on AI’s role in artistic generation, while also highlighting the need for systematic validation and future refinements.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4926460
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact