The interest in analyzing alternative fuels and new propulsion technologies for shipping decarbonization is growing rapidly. This paper aims to evaluate the performance of high-temperature polymeric exchange membrane fuel cells (HT-PEMFCs) fed by reformed methanol and their potential application as a propulsion system for vessels. The proposed system is intended to be installed on board a 10 m long ship, designed for commercial use in the marine area of Capri Island. Numerical and experimental analyses were performed to estimate the system's performance, and a feasibility assessment was carried out to verify its real applicability on board the reference case study. From the numerical perspective, a CFD model of the ship hull, as well as a thermochemical model of the propulsion system, was developed. From the experimental point of view, the system behavior was tested by means of a dedicated test bench. The results of the numerical models allowed for the sizing of the propulsion system and the calculation of the fuel consumption. In particular, to satisfy the ship's power demand, two 5 kW HT-PEMFCs were needed, with a total fuel consumption of 12.7 kg over a typical daily cruise, with a methanol consumption of 1.88 kg/h during cruising at 7 knots. The feasibility analysis highlighted that the propulsion system fits the vessel's requirements, both in terms of volume and weight.
Advancing Sustainable Propulsion Solutions for Maritime Applications: Numerical and Experimental Assessments of a Methanol HT-PEMFC System
Minutillo M.
2025
Abstract
The interest in analyzing alternative fuels and new propulsion technologies for shipping decarbonization is growing rapidly. This paper aims to evaluate the performance of high-temperature polymeric exchange membrane fuel cells (HT-PEMFCs) fed by reformed methanol and their potential application as a propulsion system for vessels. The proposed system is intended to be installed on board a 10 m long ship, designed for commercial use in the marine area of Capri Island. Numerical and experimental analyses were performed to estimate the system's performance, and a feasibility assessment was carried out to verify its real applicability on board the reference case study. From the numerical perspective, a CFD model of the ship hull, as well as a thermochemical model of the propulsion system, was developed. From the experimental point of view, the system behavior was tested by means of a dedicated test bench. The results of the numerical models allowed for the sizing of the propulsion system and the calculation of the fuel consumption. In particular, to satisfy the ship's power demand, two 5 kW HT-PEMFCs were needed, with a total fuel consumption of 12.7 kg over a typical daily cruise, with a methanol consumption of 1.88 kg/h during cruising at 7 knots. The feasibility analysis highlighted that the propulsion system fits the vessel's requirements, both in terms of volume and weight.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


