This work evaluates both the effects of a multiple-pass high-pressure homogenization treatment on the microbial inactivation of selected microbial strains (Saccharomyces cerevisiae, Lactobacillus delbrueckii, Escherichia coli) inoculated into commercial fruit juices (orange, red orange, pineapple) as well as the application of this non-thermal technology to the pasteurization of fresh juices (Annurca apple juice). The pressure level ranged from 50 to 250 MPa, the number of passes from 1 to 5 and the inlet temperature from 2 to 20 °C. Preliminary tests in distilled water showed that the efficiency of the multiple-pass treatment significantly depends on both the homogenizing pressure as well as the microbial species. The subsequent extension of the multiple-pass treatment to the inactivation of S. cerevisiae inoculated into three different fruit juices (orange, red-orange and pineapple juice) highlighted that the inactivation induced by the high pressure treatment did not depend on the properties of the tested juices and was not statistically different from inactivation in water (p value < 0.05). These findings were supported by the comparison of two different mathematical models used to fit the inactivation kinetics, whose fitting parameters were not significantly different for water and the fruit juices for any pressure level applied. Three homogenization passes at 150 MPa and 25 °C, which resulted to be optimal for yeast inactivation in fruit juices, were effective for the stabilization of the endogenous microbial load of fresh Annurca apple juice. The treated apple juice showed a minimum shelf-life of 28 days under refrigerated conditions, during which the natural qualities of the fresh juice were completely preserved.

Application of a multi-pass high-pressure homogenization treatment for the pasteurization of fruit juices

MARESCA, Paola;DONSI', FRANCESCO;FERRARI, Giovanna
2011

Abstract

This work evaluates both the effects of a multiple-pass high-pressure homogenization treatment on the microbial inactivation of selected microbial strains (Saccharomyces cerevisiae, Lactobacillus delbrueckii, Escherichia coli) inoculated into commercial fruit juices (orange, red orange, pineapple) as well as the application of this non-thermal technology to the pasteurization of fresh juices (Annurca apple juice). The pressure level ranged from 50 to 250 MPa, the number of passes from 1 to 5 and the inlet temperature from 2 to 20 °C. Preliminary tests in distilled water showed that the efficiency of the multiple-pass treatment significantly depends on both the homogenizing pressure as well as the microbial species. The subsequent extension of the multiple-pass treatment to the inactivation of S. cerevisiae inoculated into three different fruit juices (orange, red-orange and pineapple juice) highlighted that the inactivation induced by the high pressure treatment did not depend on the properties of the tested juices and was not statistically different from inactivation in water (p value < 0.05). These findings were supported by the comparison of two different mathematical models used to fit the inactivation kinetics, whose fitting parameters were not significantly different for water and the fruit juices for any pressure level applied. Three homogenization passes at 150 MPa and 25 °C, which resulted to be optimal for yeast inactivation in fruit juices, were effective for the stabilization of the endogenous microbial load of fresh Annurca apple juice. The treated apple juice showed a minimum shelf-life of 28 days under refrigerated conditions, during which the natural qualities of the fresh juice were completely preserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/3019469
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 76
  • ???jsp.display-item.citation.isi??? 69
social impact