This work focuses on the encapsulation of essential oils into nanometric delivery systems for incorporation into fruit juices, in order to enhance their antimicrobial activity while minimizing the impact on the quality attributes of the final product. A terpenes mixture and d-limonene were encapsulated into nanoemulsions based on food-grade ingredients, prepared by high pressure homogenization at 300 MPa. The effect of the delivery systems on the antimicrobial activity of terpenes was investigated by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for three different classes of microorganisms (Lactobacillus delbrueckii, Saccharomyces cerevisiae, Escherichia coli). The increase of the antimicrobial activity resulted to depend on the formulation and mean diameter of the delivery systems as well as on the microorganisms class. Additionally, GC–MS analysis revealed that high intensity processing for nanoemulsion production may affect the chemical stability of several active compounds. The application of the most efficient antimicrobial nanocapsules was tested in pear and orange juices inoculated with L. delbrueckii. Due to the higher antimicrobial activity of the nanoencapsulated compounds, lower antimicrobial concentrations are required for a bactericidal action under accelerated aging at 32 °C, with a minimal alteration of the organoleptic properties of the juice.

Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods

DONSI', FRANCESCO;SESSA, MARIARENATA;FERRARI, Giovanna
2011

Abstract

This work focuses on the encapsulation of essential oils into nanometric delivery systems for incorporation into fruit juices, in order to enhance their antimicrobial activity while minimizing the impact on the quality attributes of the final product. A terpenes mixture and d-limonene were encapsulated into nanoemulsions based on food-grade ingredients, prepared by high pressure homogenization at 300 MPa. The effect of the delivery systems on the antimicrobial activity of terpenes was investigated by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for three different classes of microorganisms (Lactobacillus delbrueckii, Saccharomyces cerevisiae, Escherichia coli). The increase of the antimicrobial activity resulted to depend on the formulation and mean diameter of the delivery systems as well as on the microorganisms class. Additionally, GC–MS analysis revealed that high intensity processing for nanoemulsion production may affect the chemical stability of several active compounds. The application of the most efficient antimicrobial nanocapsules was tested in pear and orange juices inoculated with L. delbrueckii. Due to the higher antimicrobial activity of the nanoencapsulated compounds, lower antimicrobial concentrations are required for a bactericidal action under accelerated aging at 32 °C, with a minimal alteration of the organoleptic properties of the juice.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/3023623
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 559
  • ???jsp.display-item.citation.isi??? 503
social impact