To investigate the protective effect of two anti-reactive oxygen species (ROS) substances, copper-zinc superoxide dismutase (CuZn-SOD) and allopurinol, in impulse noise-exposed guinea pigs.Allopurinol or CuZn-SOD were administered intraperitoneally before exposure to 125 dB SPL noise centered at 2.0-3.0 kHz, with a repetition rate of 4/s, for 1.8 h. Hearing thresholds were tested by means of electrocochleography after implanting the animals with permanent electrodes. The presence of lipoperoxides in the guinea pig cochleae exposed to noise-induced oxidative stress was determined by means of the dosage of malondialdhyde, evaluated by measuring the content of thiobarbituric acid reactive substances in perilymph samples.Acoustic stress induced ROS formation and both allopurinol and CuZn-SOD exerted a protective effect on the cochlea. Comparison of compound action potential thresholds in different animal groups showed that the temporary threshold shift was significantly lower in treated animals than in those without pharmacological protection.The protective effect of the antioxidant agents demonstrates that, even at a high level of impulse noise exposure, a metabolic mechanism of cochlear damage may still play an important role in noise-exposed sensorineural hearing loss.

Effect of superoxide dismutase and allopurinol on impulse noise-exposed guinea pigs--electrophysiological and biochemical study.

CASSANDRO, Ettore;
2003

Abstract

To investigate the protective effect of two anti-reactive oxygen species (ROS) substances, copper-zinc superoxide dismutase (CuZn-SOD) and allopurinol, in impulse noise-exposed guinea pigs.Allopurinol or CuZn-SOD were administered intraperitoneally before exposure to 125 dB SPL noise centered at 2.0-3.0 kHz, with a repetition rate of 4/s, for 1.8 h. Hearing thresholds were tested by means of electrocochleography after implanting the animals with permanent electrodes. The presence of lipoperoxides in the guinea pig cochleae exposed to noise-induced oxidative stress was determined by means of the dosage of malondialdhyde, evaluated by measuring the content of thiobarbituric acid reactive substances in perilymph samples.Acoustic stress induced ROS formation and both allopurinol and CuZn-SOD exerted a protective effect on the cochlea. Comparison of compound action potential thresholds in different animal groups showed that the temporary threshold shift was significantly lower in treated animals than in those without pharmacological protection.The protective effect of the antioxidant agents demonstrates that, even at a high level of impulse noise exposure, a metabolic mechanism of cochlear damage may still play an important role in noise-exposed sensorineural hearing loss.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/3124685
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 25
social impact