In this paper a new offline model-free approximate Q-iteration is proposed. Following the idea of Fitted Q-iteration, we use a computational scheme based on Functional Networks, which have been proved to be a powerful alternative to Neural Networks, because they do not require a large number of training samples. We state a condition for the convergence of the proposed technique and we apply it to three classical control problems, namely, a DC motor, a pendulum swing up, a robotic arm. We present a comparative study to show the approximation capabilities of our method with a relatively small number of training samples.
Fitted Q-iteration by Functional Networks for control problems
GAETA, Matteo;LOIA, Vincenzo;MIRANDA, Sergio;TOMASIELLO, Stefania
2016-01-01
Abstract
In this paper a new offline model-free approximate Q-iteration is proposed. Following the idea of Fitted Q-iteration, we use a computational scheme based on Functional Networks, which have been proved to be a powerful alternative to Neural Networks, because they do not require a large number of training samples. We state a condition for the convergence of the proposed technique and we apply it to three classical control problems, namely, a DC motor, a pendulum swing up, a robotic arm. We present a comparative study to show the approximation capabilities of our method with a relatively small number of training samples.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.