In this paper a new offline model-free approximate Q-iteration is proposed. Following the idea of Fitted Q-iteration, we use a computational scheme based on Functional Networks, which have been proved to be a powerful alternative to Neural Networks, because they do not require a large number of training samples. We state a condition for the convergence of the proposed technique and we apply it to three classical control problems, namely, a DC motor, a pendulum swing up, a robotic arm. We present a comparative study to show the approximation capabilities of our method with a relatively small number of training samples.

Fitted Q-iteration by Functional Networks for control problems

GAETA, Matteo;LOIA, Vincenzo;MIRANDA, Sergio;TOMASIELLO, Stefania
2016-01-01

Abstract

In this paper a new offline model-free approximate Q-iteration is proposed. Following the idea of Fitted Q-iteration, we use a computational scheme based on Functional Networks, which have been proved to be a powerful alternative to Neural Networks, because they do not require a large number of training samples. We state a condition for the convergence of the proposed technique and we apply it to three classical control problems, namely, a DC motor, a pendulum swing up, a robotic arm. We present a comparative study to show the approximation capabilities of our method with a relatively small number of training samples.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4677500
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact