We introduce domain decomposition methods of Schwarz waveform relaxation (WR) type for fractional diffusion-wave equations. We show that the Dirichlet transmission conditions among the subdomains lead to slow convergence. So, we construct optimal transmission conditions at the artificial interfaces and we prove that optimal Schwarz WR methods on N subdomains converge in N iterations both on infinite spatial domains and on finite spatial domains. We also propose optimal transmission conditions when the original problem is spatially discretized and we prove the same result found in the continuous case.

Optimal Schwarz waveform relaxation for fractional diffusion-wave equations

Califano, Giovanna;Conte, Dajana
2018

Abstract

We introduce domain decomposition methods of Schwarz waveform relaxation (WR) type for fractional diffusion-wave equations. We show that the Dirichlet transmission conditions among the subdomains lead to slow convergence. So, we construct optimal transmission conditions at the artificial interfaces and we prove that optimal Schwarz WR methods on N subdomains converge in N iterations both on infinite spatial domains and on finite spatial domains. We also propose optimal transmission conditions when the original problem is spatially discretized and we prove the same result found in the continuous case.
2018
File in questo prodotto:
File Dimensione Formato  
2018 Optimal Schwarz waveform relaxation for fractional diffusion-wave equations. APPLIED NUMERICAL MATHEMATICS.pdf

Open Access dal 01/01/2021

Descrizione: Versione post print
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 315 kB
Formato Adobe PDF
315 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4707789
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 12
social impact