INTRODUCTION: Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder that primarily affects girls, with an incidence of 1:10,000-20,000. The diagnosis is based on clinical features: an initial period of apparently normal development (ages 6-12 months) followed by a rapid decline with regression of acquired motor skills, loss of spoken language and purposeful hand use, onset of hand stereotypes, abnormal gait, and growth failure. The course of the disease, in its classical form, is characterized by four stages. Three different atypical variants of the disease have been defined. Epilepsy has been reported in 60%-80% of patients with RTT; it differs among the various phenotypes and genotypes and its severity is an important contributor to the clinical severity of the disease. METHODS: In this manuscript we reviewed literature on RTT, focusing on the different genetic entities, the correlation genotype-phenotype, and the peculiar epileptic phenotype associated to each of them. RESULTS: Mutations in MECP2 gene, located on Xq28, account for 95% of typical RTT cases and 73.2% of atypical RTT. CDKL5 and FOXG1 are other genes identified as causative genes in atypical forms of RTT. In the last few years, a lot of new genes have been identified as causative genes for RTT phenotype. CONCLUSIONS: Recognizing clinical and EEG patterns in different RTT variants may be useful in diagnosis and management of these patients.

Epilepsy and genetic in Rett syndrome: A review.

Operto FF
Investigation
;
Coppola G
Conceptualization
2019

Abstract

INTRODUCTION: Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder that primarily affects girls, with an incidence of 1:10,000-20,000. The diagnosis is based on clinical features: an initial period of apparently normal development (ages 6-12 months) followed by a rapid decline with regression of acquired motor skills, loss of spoken language and purposeful hand use, onset of hand stereotypes, abnormal gait, and growth failure. The course of the disease, in its classical form, is characterized by four stages. Three different atypical variants of the disease have been defined. Epilepsy has been reported in 60%-80% of patients with RTT; it differs among the various phenotypes and genotypes and its severity is an important contributor to the clinical severity of the disease. METHODS: In this manuscript we reviewed literature on RTT, focusing on the different genetic entities, the correlation genotype-phenotype, and the peculiar epileptic phenotype associated to each of them. RESULTS: Mutations in MECP2 gene, located on Xq28, account for 95% of typical RTT cases and 73.2% of atypical RTT. CDKL5 and FOXG1 are other genes identified as causative genes in atypical forms of RTT. In the last few years, a lot of new genes have been identified as causative genes for RTT phenotype. CONCLUSIONS: Recognizing clinical and EEG patterns in different RTT variants may be useful in diagnosis and management of these patients.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4728568
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact