The spread of Internet and online social media has created a huge amount of data able to provide new insights to researchers in dierent disciplinary elds, but it also presents new challenges for data science. Data arising from online social networks can be naturally coded as relational data in af- liation and adjacency matrices, then analyzed with social network analysis. In this study, we apply an interdisciplinary approach (based on automatic visual content analysis, social network analysis, and exploratory statistical techniques) to dene and derive a suitable indicator for characterizing places, along with the online activities of travelers, in terms of sharing images. We envisage a novel storytelling perspective where stories are related to places and the narrative activity is realized through posting images. Specically, we use data extracted from an online social network (i.e., Instagram) to identify travelers' paths among sites of interests. Starting from a large collection of pictures geolocalized in a pre-specied set of locations (i.e., ve locations in the Campania region of Italy during the 2018 Christmas season), we use automatic alternative text to produce an ex-post taxonomy of images on the most recurrent themes emerging from pictures posted on Instagram. Quantitative measures dened on the co-occurrence of locations and the emerging themes are used to build a statistical indicator able to characterize paths among dierent locations as narrated from travelers' posts. The proposed analysis, presented and discussed along with real data, can be useful for stakeholders interested in the elds of policy-making, communication design, and territory proling strategies.

A Network-Based Indicator of Travelers Performativity on Instagram

Giordano, Giuseppe
Methodology
;
Primerano, Ilaria
Investigation
;
Vitale, Pierluigi
Conceptualization
2020

Abstract

The spread of Internet and online social media has created a huge amount of data able to provide new insights to researchers in dierent disciplinary elds, but it also presents new challenges for data science. Data arising from online social networks can be naturally coded as relational data in af- liation and adjacency matrices, then analyzed with social network analysis. In this study, we apply an interdisciplinary approach (based on automatic visual content analysis, social network analysis, and exploratory statistical techniques) to dene and derive a suitable indicator for characterizing places, along with the online activities of travelers, in terms of sharing images. We envisage a novel storytelling perspective where stories are related to places and the narrative activity is realized through posting images. Specically, we use data extracted from an online social network (i.e., Instagram) to identify travelers' paths among sites of interests. Starting from a large collection of pictures geolocalized in a pre-specied set of locations (i.e., ve locations in the Campania region of Italy during the 2018 Christmas season), we use automatic alternative text to produce an ex-post taxonomy of images on the most recurrent themes emerging from pictures posted on Instagram. Quantitative measures dened on the co-occurrence of locations and the emerging themes are used to build a statistical indicator able to characterize paths among dierent locations as narrated from travelers' posts. The proposed analysis, presented and discussed along with real data, can be useful for stakeholders interested in the elds of policy-making, communication design, and territory proling strategies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4736640
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact