Background and purpose Moyamoya angiopathy is a progressive cerebral vasculopathy. The p.R4810K substitution in RNF213 has previously been linked to moyamoya disease in Asian populations. When associated with other medical conditions, such as neurofibromatosis type 1, this vasculopathy is frequently reported as moyamoya syndrome. Intriguingly, most cases of moyamoya-complicated neurofibromatosis type 1 have been described in Caucasians, inverting the population ratio observed in Asians, although prevalence of neurofibromatosis type 1 is constant worldwide. Our aim was to investigate whether, among Caucasians, additive genetic factors may contribute to the occurrence of moyamoya in neurofibromatosis type 1. Methods Whole exome sequencing was carried out on an Italian family with moyamoya-complicated neurofibromatosis type 1 to identify putative genetic modifiers independent of the NF1 locus and potentially involved in moyamoya pathogenesis. Results were validated in an unrelated family of German ancestry. Results We identified the p.P186S substitution (rs35857561) in MRVI1 that segregated with moyamoya syndrome in both the Italian and German family. Conclusions The rs35857561 polymorphism in MRVI1 may be a genetic susceptibility factor for moyamoya in European patients with neurofibromatosis type 1. MRVI1 is a functional partner of ITPR1, PRKG1 and GUCY1A3, which are involved in response to nitric oxide. Mutations in GUCY1A3 have been recently linked to a recessive syndromic form of moyamoya with esophageal achalasia.

Whole exome sequencing identifies MRVI1 as a susceptibility gene for moyamoya syndrome in neurofibromatosis type 1

Melis D.;
2018-01-01

Abstract

Background and purpose Moyamoya angiopathy is a progressive cerebral vasculopathy. The p.R4810K substitution in RNF213 has previously been linked to moyamoya disease in Asian populations. When associated with other medical conditions, such as neurofibromatosis type 1, this vasculopathy is frequently reported as moyamoya syndrome. Intriguingly, most cases of moyamoya-complicated neurofibromatosis type 1 have been described in Caucasians, inverting the population ratio observed in Asians, although prevalence of neurofibromatosis type 1 is constant worldwide. Our aim was to investigate whether, among Caucasians, additive genetic factors may contribute to the occurrence of moyamoya in neurofibromatosis type 1. Methods Whole exome sequencing was carried out on an Italian family with moyamoya-complicated neurofibromatosis type 1 to identify putative genetic modifiers independent of the NF1 locus and potentially involved in moyamoya pathogenesis. Results were validated in an unrelated family of German ancestry. Results We identified the p.P186S substitution (rs35857561) in MRVI1 that segregated with moyamoya syndrome in both the Italian and German family. Conclusions The rs35857561 polymorphism in MRVI1 may be a genetic susceptibility factor for moyamoya in European patients with neurofibromatosis type 1. MRVI1 is a functional partner of ITPR1, PRKG1 and GUCY1A3, which are involved in response to nitric oxide. Mutations in GUCY1A3 have been recently linked to a recessive syndromic form of moyamoya with esophageal achalasia.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4760459
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact