Food adulteration is in the focus of research due to its negative effect on safety and nutritional value and because of the demand for the protection of brands and regional origins. Portugieser and Sauvignon Blanc wines were selected for experiments. Samples were made by water dilution, the addition of sugar and then a combination of both. Near infrared (NIR) spectra were acquired in the range of 900–1700 nm. Partial least squares regression was performed to predict the adulteration level. The model including all wines and adulterations achieved a prediction error of 0.59% added sugar and 6.85% water dilution. Low-power laser modules were used to collect diffuse reflectance signals at wavelengths of 532, 635, 780, 808, 850, 1064 nm. The general linear model resulted in a higher prediction error of 3.06% added sugar and 20.39% water dilution. Instead of classification, the present study investigated the feasibility of non-destructive methods in the prediction of adulteration level. Laser scattering successfully detected the added sugar with linear discriminant analysis (LDA), but its prediction accuracy was low. NIR spectroscopy might be suitable for rapid non-destructive estimation of wine adulteration.
Assessment of Wine Adulteration Using Near Infrared Spectroscopy and Laser Backscattering Imaging
Albanese D.
2022-01-01
Abstract
Food adulteration is in the focus of research due to its negative effect on safety and nutritional value and because of the demand for the protection of brands and regional origins. Portugieser and Sauvignon Blanc wines were selected for experiments. Samples were made by water dilution, the addition of sugar and then a combination of both. Near infrared (NIR) spectra were acquired in the range of 900–1700 nm. Partial least squares regression was performed to predict the adulteration level. The model including all wines and adulterations achieved a prediction error of 0.59% added sugar and 6.85% water dilution. Low-power laser modules were used to collect diffuse reflectance signals at wavelengths of 532, 635, 780, 808, 850, 1064 nm. The general linear model resulted in a higher prediction error of 3.06% added sugar and 20.39% water dilution. Instead of classification, the present study investigated the feasibility of non-destructive methods in the prediction of adulteration level. Laser scattering successfully detected the added sugar with linear discriminant analysis (LDA), but its prediction accuracy was low. NIR spectroscopy might be suitable for rapid non-destructive estimation of wine adulteration.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.