This study was focused on the optimization of the pulsed electric fields (PEF)-assisted extraction process using central composite design for response surface methodology from response surface methodology (RSM) with the aim to sustainably intensify the extractability of phenolic compounds from white grape pomace. The cell disintegration index (Zp) was used as response variable to identify the optimal PEF pre-treatment conditions of grape pomace in terms of field strength (E = 0.5–5 kV/cm) and energy input (WT = 1–20 kJ/kg), to be applied prior to the subsequent solid-liquid extraction (SLE) process. for both untreated and PEF-treated samples SLE process was optimized to determine the most effective combination of extraction temperature (20–50◦C), extraction time (30–300min), and solvent concentration (0–100% ethanol in water). Total phenolic content (TPC), flavonoid content (FC), and antioxidant activity (FRAP) of the obtained extracts were determined. The extracted compounds from untreated and PEF-treated samples at the optimal conditions were analyzed via HPLC-PDA analysis. Results revealed that, at a fixed extraction temperature (50◦C), the application of PEF at optimal processing conditions (E = 3.8 kV/cm, WT = 10 kJ/kg) prior to SLE has the potential to reduce the solvent consumption (3–12%) and shorten the extraction time (23–103min) to obtain the same recovery yield of phenolic compounds. Under optimized conditions, the extracts derived from PEF-treated samples showed significantly higher TPC (8%), FC (31%), and FRAP (36%) values, as compared to the control extraction. HPLC analyses revealed that epicatechin, p-coumaric acid, and quercetin were among the main phenolic compounds extracted, and no degradation phenomena occurred due to PEF application.

Optimization of Pulsed Electric Fields-Assisted Extraction of Phenolic Compounds From White Grape Pomace Using Response Surface Methodology

Serena Carpentieri;Giovanna Ferrari;Gianpiero Pataro
2022-01-01

Abstract

This study was focused on the optimization of the pulsed electric fields (PEF)-assisted extraction process using central composite design for response surface methodology from response surface methodology (RSM) with the aim to sustainably intensify the extractability of phenolic compounds from white grape pomace. The cell disintegration index (Zp) was used as response variable to identify the optimal PEF pre-treatment conditions of grape pomace in terms of field strength (E = 0.5–5 kV/cm) and energy input (WT = 1–20 kJ/kg), to be applied prior to the subsequent solid-liquid extraction (SLE) process. for both untreated and PEF-treated samples SLE process was optimized to determine the most effective combination of extraction temperature (20–50◦C), extraction time (30–300min), and solvent concentration (0–100% ethanol in water). Total phenolic content (TPC), flavonoid content (FC), and antioxidant activity (FRAP) of the obtained extracts were determined. The extracted compounds from untreated and PEF-treated samples at the optimal conditions were analyzed via HPLC-PDA analysis. Results revealed that, at a fixed extraction temperature (50◦C), the application of PEF at optimal processing conditions (E = 3.8 kV/cm, WT = 10 kJ/kg) prior to SLE has the potential to reduce the solvent consumption (3–12%) and shorten the extraction time (23–103min) to obtain the same recovery yield of phenolic compounds. Under optimized conditions, the extracts derived from PEF-treated samples showed significantly higher TPC (8%), FC (31%), and FRAP (36%) values, as compared to the control extraction. HPLC analyses revealed that epicatechin, p-coumaric acid, and quercetin were among the main phenolic compounds extracted, and no degradation phenomena occurred due to PEF application.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4860893
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact